Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(12)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38516976

RESUMO

This study investigated the segmental dynamics of polymers near polymer-polymer interfaces by probing the rotation of polymer-tethered fluorescent molecules using imaging rotational fluorescence correlation microscopy. Multilayered films were utilized to provide spatial selectivity relative to different polymer-polymer interfaces. In the experimental setup, for the overlayer polymer, polystyrene (PS) was employed and a 15 nm-thick probe-containing layer was placed ≈25 nm apart from different underlayer polymers with glass transition temperatures (Tg) either lower or higher than that of PS. The underlayer of poly-n-butyl methacrylate had 72 K lower Tg than that of PS, whereas polymethyl methacrylate and polysulfone had 22 and 81 K higher Tg, respectively, than that of PS. Two key dynamic features of the glass transition, the non-Arrhenius temperature dependence and stretched relaxation, were examined to study the influence of soft and hard confinements on the segmental dynamics of the overlayer polymer near the polymer-polymer interfaces. Although complications exist in the probing location owing to the diffusion of the polymer-tethered probe during the annealing protocol to consolidate the multilayers, the results suggest that either the segmental dynamics of the polymer near the polymer-polymer interface do not change owing to the soft and hard confinements or the interfacial perturbation is very short ranged.

2.
ACS Omega ; 8(17): 14900-14906, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37151529

RESUMO

Metal-organic frameworks (MOFs) based on Cu-benzene tricarboxylate (CuBTC) are widely used for gas storage and removal applications. However, they readily lose their crystal structures under humid conditions, limiting their practical applications. This structural decomposition reduces the specific surface area, gas adsorption capability, and recyclability of CuBTC considerably. In this study, a stable MOF against water exposure was designed based on FeBTC nanoparticle-covered CuBTC (FeCuBTC). A simple one-pot solvothermal process that enables the epitaxial growth of FeBTC on the CuBTC surface was proposed. Structural and morphological analyses after water exposure revealed that the water stability of FeCuBTC was better than that of CuBTC, which completely lost its crystallinity. This observed improvement in the water stability of the synthesized MOF proved to be beneficial for the adsorption of formaldehyde under humid conditions. The proposed strategy herein is simple yet highly effective in the design of hetero-bimetallic MOFs with considerably improved water resistance and extended applicability for environmental remediation processes.

3.
J Colloid Interface Sci ; 629(Pt A): 256-264, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36084442

RESUMO

We demonstrate an approach to examine the local segmental dynamics of a polymer near the interface of an inorganic filler by observing the rotational dynamics of the fluorescent probe at the chain ends of polymer brushes grafted onto the surface of the filler particles. Localization of the fluorescent probe was realized by designing and synthesizing fluorophore-tethered polystyrene (PS) brushes anchored on the surface of silica particles of controlled sizes. Fluorophore-functionalized telechelic PS with an azide functionality at the other chain end was achieved via a combination of atom transfer radical polymerization and post-polymerization modification. The azide-bearing PS chains were tethered to alkyne-functionalized particles via copper-catalyzed cycloaddition reaction. The molecular weight of the grafted polymer chains was controlled to be less than the critical entanglement molecular weight, and the chain density was controlled to be low enough so that the observed dynamics was not perturbed by the polymer brush conformation and brush-matrix polymer entanglement. The polymer dynamics near the surface of the particles at low concentrations was closely examined in the bulk film geometry by employing imaging rotational fluorescence correlation microscopy (irFCM). The observed polymer dynamics near the interface were not altered in the inorganic/polymer composite geometry when the surface did not have favorable interaction with the matrix polymer. The presented rational design of the chemical route and examination of local dynamics highlight a feasible approach to construct material systems with high complexities towards a deeper understanding of composite materials.

4.
J Chem Phys ; 157(19): 194902, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36414460

RESUMO

The rotational dynamics of fluorescent probes of different sizes in glass-forming materials were examined to correlate the time distribution and length scale of the dynamic heterogeneity (ξhet). As the size of the probe increased, the temperature dependence of the rotation correlation time (τc) shifted to longer times, and from this shift, the length scale associated with the glass transition (ξα) was estimated through the Debye-Stokes-Einstein (DSE) relationship and the length scale of the probe (ξsDFT) estimated from quantum mechanical calculations. The estimated ξα values roughly matched with ξhet obtained from calorimetric analysis but were considerably smaller than those deduced from 4D NMR, boson peak, and four-point dynamic susceptibility measurements but with a similar trend of decrease in the length scale upon the increase in the stretching exponent (ß) of the system. Because ß of the glass formers represents the time distribution of the system, and τc is related to the weighted average of the distribution, the length-scale distribution of the glass transition can be deduced by adopting the DSE relationship and assuming ξα is the weighted average of this distribution at the glass transition temperature. In such a case, the upper bound of the length scale and trend matches the experimentally obtained ξhet from 4D NMR, boson peak, and four-point dynamic susceptibility measurements. Furthermore, at a given temperature, as the probe size increased, the ß value reported by the probe increased, whereas the temperature dependence of ß, which strongly correlates with the fragility of the system, was independent of the probe size.

5.
Nano Lett ; 22(13): 5487-5494, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35748615

RESUMO

Polymer networks generally consist of an ensemble of single chains. However, understanding how chain conformation affects the structure and properties of polymer networks remains a challenge for optimizing their functionality. Here, we present the fabrication and comparative study of a polymer network composed of collapsed self-entangled chains (intrachain entangled network) and a standard polymer network in which random-coil chains are entangled with each other (interchain entangled network). For poly(methyl methacrylate) thin films composed of these networks, we coupled solvent vapor swelling and single-molecule tracking techniques to examine the anomalies in the dynamics of a small-molecular probe included in the system. We demonstrate that when compared to the interchain entangled network the intrachain one exhibits a more substantial structural heterogeneity, particularly under highly crowded conditions. This network also exhibits physical compactness, which keeps the heterogeneous network structure frozen over time and impedes network plasticization through solvent uptake by the film.


Assuntos
Polímeros , Polimetil Metacrilato , Conformação Molecular , Polímeros/química , Solventes
6.
Nat Commun ; 13(1): 3580, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739122

RESUMO

Rotational-translational decoupling, in which translational motion is apparently enhanced over rotational motion in violation of Stokes-Einstein (SE) and Debye-Stokes-Einstein (DSE) predictions, has been observed in materials near their glass transition temperatures (Tg). This has been posited to result from ensemble averaging in the context of dynamic heterogeneity. In this work, ensemble and single molecule experiments are performed in parallel on a fluorescent probe in high molecular weight polystyrene near its Tg. Ensemble results show decoupling onset at approximately 1.15Tg, increasing to over three orders of magnitude at Tg. Single molecule measurements also show a high degree of decoupling, with typical molecules at Tg showing translational diffusion coefficients nearly 400 times higher than expected from SE/DSE predictions. At the single molecule level, higher degree of breakdown is associated with particularly mobile molecules and anisotropic trajectories, providing support for anomalous diffusion as a critical driver of rotational-translational decoupling and SE/DSE breakdown.

7.
Carbohydr Polym ; 226: 115259, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31582070

RESUMO

We demonstrate effective functionalization chemistry for cellulose nanofiber modification using thiol functionality. Electrospun cellulose acetate nanofibers were deacetylated to obtain cellulose nanofibers, which were modified further to incorporate thiol on their surface by the esterification of hydroxyl groups with 3,3'-dithiodipropionic acid and further reductive cleavage of the disulfide bond. The thiol functionality was highly versatile to bring simple and efficient chemical reactions to attain (i) Ag nanoparticle-adsorbed cellulose nanofibers by Ag ion reduction at surface, (ii) various amine (primary amine and quaternary amine) functionalized cellulose nanofibers by Michael addition, and (iii) complex polymer functionalized cellulose nanofibers by a radical-based thiol-ene reaction, under mild conditions, i.e. in any reaction media, at room temperature, and under ambient atmosphere, evidenced by a variety of characterization methods including a quantitative analysis with X-ray photoemission spectroscopy. These scalable thiol-based chemistries should offer a new generation of well-tailored cellulose nanofiber materials with complex inorganic, organic, and polymeric functionalities, potentially expanding to functionalized surfaces of other carbohydrate-based materials to achieve the desired properties.

8.
ACS Macro Lett ; 8(9): 1181-1186, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-35619450

RESUMO

How tethered probes report dynamics of host polymers near the glass transition was investigated by changing the length of the flexible linkers and the number of tethering points via imaging rotational fluorescence correlation microscopy and compared with free probes of different sizes. The results show that tethering did not alter the temperature-dependence of polymer dynamics and the shape of the correlation decay reported by the probe; however, the rotation slowed down up to ≈1 decade when both ends of the probe were restricted with short alkyl chain linkers. Upon comparison with the bigger free probe, the mechanism of the slowdown was attributed to the restricted motion upon tethering for tethered probes compared to averaging over different regions of the dynamic heterogeneity for the bigger probe. If the size of the probe was comparable to that of the dynamic heterogeneity of the system, tethered probes accurately report dynamics relevant to glass transition, regardless of tethering conditions.

9.
J Chem Phys ; 149(16): 164501, 2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30384672

RESUMO

Using extrinsic probes to study a host system relies on the probes' ability to accurately report the host properties under study. Probes have long been used to characterize dynamic heterogeneity, the phenomenon in which a liquid near its glass transition exhibits distinct dynamics as a function of time and position, with molecules within nanometers of each other exhibiting dynamics that may vary by orders of magnitude. The spatial and temporal characteristics of dynamic heterogeneity demand the selection of probes using stringent criteria on their size and dynamics. In this report, we study the dynamic heterogeneity of the prototypical molecular glass former o-terphenyl by investigating single molecule rotation of two perylene dicarboximide probe molecules that differ in size and comparing this to results obtained previously with the probe BODIPY268. It is found that a probe's ability to accurately report dynamic heterogeneity in o-terphenyl depends on whether the reported distribution of dynamics overlaps with the intrinsic dynamics of the host, which is naturally related to the width of the intrinsic dynamics and the magnitude of dynamical shift in probe dynamics relative to the host. We show that a probe that rotates ≈15 times more slowly than the intrinsic dynamics of the host o-terphenyl senses the slowest ≈5% of the full dynamic heterogeneity whereas one that rotates ≈65 times more slowly than the host fails to report dynamic heterogeneity of the host.

10.
J Chem Phys ; 149(16): 164910, 2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30384724

RESUMO

The segmental dynamics of polymers is known to be closely related to the glass transition where the glass transition is the single most important parameter in its application. In this study, we designed an efficient and reliable experimental method to study the ensemble segmental dynamics of polymers by probing rotation of fluorescent molecules in the polymer matrix using a home-built microscope setup. The rotational dynamics of fluorescent molecules was analyzed using a fluorescence correlation method that extracts information through orthogonally polarized fluorescence images. From fluorescence intensities, autocorrelation functions (ACFs) were obtained in many areas simultaneously and by averaging several ACFs, well-defined ACF and precise experimental values were obtained from a single measurement movie. The robustness of the method and optimal experimental conditions were investigated by performing experiments with various probe concentrations, frame rates, and measurement lengths. By employing a home-built vacuum chamber, a wide temperature range was achieved, and we demonstrate the versatility and efficiency of imaging rotational FCM (fluorescence correlation microscopy) by probing segmental dynamics of different polymeric systems with glass transition temperature that differ by ≈100 K and with fragility ranging from 49 to 131. The imaging rotational FCM covers dynamics up to 4 orders of magnitude near the glass transition, and it was found that the rapidity of the stretching exponent ß variation with temperature correlates with the fragility of polymers.

11.
J Chem Phys ; 148(20): 204508, 2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29865823

RESUMO

Polymeric systems close to their glass transition temperature are known to exhibit heterogeneous dynamics that evolve both over time and space, comparable to the dynamics of small molecule glass formers. It remains unclear how temperature influences the degree of heterogeneous dynamics in such systems. In the following report, a fluorescent perylene dicarboximide probe molecule that reflects the full breadth of heterogeneity of the host was used to examine the temperature dependence of the dynamic heterogeneity lifetime in polystyrene at several temperatures ranging from the glass transition to 10 K above this temperature via single molecule microscopy. Contrary to prior reports, no apparent temperature dependence of time scales associated with dynamic heterogeneity was detected; indeed, the probe molecules report characteristic dynamic heterogeneity lifetimes 100-300 times the average alpha-relaxation time (τα) of the polystyrene host at all temperatures studied.

12.
Polymers (Basel) ; 10(10)2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-30961098

RESUMO

We induced a terpyridine moiety into a norbornene-based polymer to demonstrate its self-healing property, without an external stimulus, such as light, heat, or healing agent, using metal⁻ligand interactions. We synthesized terpyridine incorporated norbornene-based polymers using a ring-opening metathesis polymerization. The sol state of diluted polymer solutions was converted into supramolecular assembled gels, through the addition of transition metal ions (Ni2+, Co2+, Fe2+, and Zn2+). In particular, a supramolecular complex gel with Zn2+, which is a metal with a lower binding affinity, demonstrated fast self-healing properties, without any additional external stimuli, and its mechanical properties were completely recovered.

13.
RSC Adv ; 8(43): 24166-24174, 2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35539156

RESUMO

We demonstrate the synthesis of poly(methyl methacrylate) (PMMA) and poly(styrene-b-methyl methacrylate) (P(S-b-MMA)) brushes on crosslinked random copolymer thin films, compositionally varied poly(styrene-r-glycidyl methacrylate) (P(S-r-GMA)), which can be further functionalized with a molecule featuring an initiator group upon crosslinking to form highly stable thin films. With careful optimizations, PMMA brushes were successfully grown from the surfaces of initiator functionalized P(S-r-GMA) via surface-initiated atom transfer radical polymerization. The grafting densities of the PMMA and P(S-b-MMA) brushes were effectively controlled to be in different density regimes by controlling the composition of P(S-r-GMA) and post-crosslinking functionalization methods. Synthesized BCP brushes were stable upon repetitive washing and thermal annealing processes even at high grafting density, highlighting that the outstanding stability of crosslinked P(S-r-GMA) thin films enables close examination of the morphology of thermally annealed P(S-b-MMA) brushes in different grafting density regimes.

14.
Biophys J ; 113(8): 1882-1892, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-29045881

RESUMO

Fibrillar type I collagen-based hydrogels are commonly used in tissue engineering and as matrices for biophysical studies. Mechanical and structural properties of these gels are known to be governed by the conditions under which fibrillogenesis occurs, exhibiting variation as a function of protein concentration, temperature, pH, and ionic strength. Deeper understanding of how macroscopic structure affects viscoelastic properties of collagen gels over the course of fibrillogenesis provides fundamental insight into biopolymer gel properties and promises enhanced control over the properties of such gels. Here, we investigate type I collagen fibrillogenesis using confocal rheology-simultaneous confocal reflectance microscopy, confocal fluorescence microscopy, and rheology. The multimodal approach allows direct comparison of how viscoelastic properties track the structural evolution of the gel on fiber and network length scales. Quantitative assessment and comparison of each imaging modality and the simultaneously collected rheological measurements show that the presence of a system-spanning structure occurs at a time similar to rheological determinants of gelation. Although this and some rheological measures are consistent with critical gelation through percolation, additional rheological and structural properties of the gel are found to be inconsistent with this theory. This study clarifies how structure sets viscoelasticity during collagen fibrillogenesis and more broadly highlights the utility of multimodal measurements as critical test-beds for theoretical descriptions of complex systems.


Assuntos
Colágeno/química , Géis/química , Microscopia Confocal , Microscopia de Fluorescência , Reologia , Espectroscopia Dielétrica , Corantes Fluorescentes , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Transição de Fase , Reologia/métodos , Substâncias Viscoelásticas/química
15.
Soft Matter ; 13(35): 5897-5904, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28766660

RESUMO

The spatial arrangement of nanoparticles (NPs) within thin polymer films may influence their properties such as the glass transition temperature. Questions regarding what may affect the spatial arrangement of NPs, however, still remain unanswered at a molecular level. In this work, we perform molecular dynamics simulations for a free-standing thin polymer film with a single NP. We find from simulations that depending on the NP size and the inter-particle interaction between the NP and polymers, one may control the spatial arrangement of the NP. When the interaction between the NP and polymers is sufficiently attractive (repulsive), the NP is likely to be placed at the center (at the surface) of the thin film in equilibrium. Interestingly, for a moderate interaction between the NP and polymers, the first-order transition occurs in the spatial arrangement of the NP as one increases the NP size: a small NP prefers the surface of the polymer film whereas a large NP prefers the center. Such a first-order transition is corroborated by calculating the free energy of the NP as a function of the position and can be understood in terms of a sixth-order Landau free energy. More interestingly, the diffusion of the NP also changes drastically due to the first-order transition in the spatial arrangement. The NP diffusion is enhanced drastically (more than expected in bulk polymer melts) as the NP is shifted to the polymer film surface.

16.
Rev Sci Instrum ; 87(1): 015106, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26827352

RESUMO

Polymer processing techniques involving solvent vapor swelling are typically challenging to control and thus reproduce. Moreover, traditional descriptions of solvent swollen films lack microscopic detail. We describe the design and use of an apparatus that facilitates macroscopic and microscopic characterization of samples undergoing solvent vapor swelling in a controlled environment. The experimental design incorporates three critical characteristics: (1) a mass-flow controlled solvent vapor delivery system allows for precise control of the amount of solvent vapor delivered to the sample, (2) a sample prepared on a quartz crystal microbalance allows for real-time assessment of the extent of sample swelling, (3) a second sample prepared and assessed in parallel on a coverslip allows real-time fluorescence microscopy during swelling. We demonstrate that this apparatus allows for single-particle tracking, which in turn facilitates in situ monitoring of local environments within the solvent-swollen film.

17.
Nano Lett ; 15(11): 7604-9, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26438977

RESUMO

The relationship between photostability and conformation of 2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene (MEH-PPV) conjugated polymers was studied via excitation polarization modulation depth (M) measurements. Upon partial photobleaching, M distributions of collapsed, highly ordered MEH-PPV molecules shifted toward lower values. Conversely, M distributions of MEH-PPV molecules with random coil conformations moved toward higher values after partial photobleaching. Monte Carlo simulations of randomly distributed dipole moments along polymer chains subjected to partial photobleaching revealed that a statistical effect leads to an increase in peak M value. Decreases in M values seen experimentally in the population of MEH-PPV molecules with high M values, however, are due to conformation-dependent photostability within single MEH-PPV polymers. We show that, while folded MEH-PPV molecules are relatively more photostable than extended MEH-PPV molecules in an ensemble, extended portions of particular molecules are more photostable than folded domains within single MEH-PPV molecules.

18.
Proc Natl Acad Sci U S A ; 112(16): 4952-7, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25825739

RESUMO

The concept of dynamic heterogeneity and the picture of the supercooled liquid as a mosaic of environments with distinct dynamics that interchange in time have been invoked to explain the nonexponential relaxations measured in these systems. The spatial extent and temporal persistence of these regions of distinct dynamics have remained challenging to identify. Here, single-molecule fluorescence measurements using a probe similar in size and mobility to the host o-terphenyl unambiguously reveal exponential relaxations distributed in time and space and directly demonstrate ergodicity of the system down to the glass transition temperature. In the temperature range probed, at least 200 times the structural relaxation time of the host is required to recover ensemble-averaged relaxation at every spatial region in the system.

19.
ACS Nano ; 9(3): 3151-8, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25743935

RESUMO

To thoroughly elucidate how molecular conformation and photophysical properties of conjugated polymers (CPs) are related requires simultaneous probing of both. Previous efforts used fluorescence imaging with one nanometer accuracy (FIONA) to image CPs, which allowed simultaneous estimation of molecular conformation and probing of fluorescence intensity decay. We show that calculating the molecular radius of gyration for putative folded and unfolded poly(2-methoxy-5-(2'-ethylhexyloxy)1,4-phenylenevinylene) (MEH-PPV) molecules using FIONA underestimates molecular extension by averaging over emitters during localization. In contrast, employing algorithms based on single molecule high resolution imaging with photobleaching (SHRImP), including an approach we term all-frames SHRImP, allows localization of individual emitters. SHRImP processing corroborates that compact MEH-PPV molecules have distinct photophysical properties from extended ones. Estimated radii of gyration for isolated 168 kDa MEH-PPV molecules immobilized in polystyrene and exhibiting either stepwise or continuous intensity decays are found to be 12.6 and 25.3 nm, respectively, while the distance between exciton recombination sites is estimated to be ∼10 nm independent of molecular conformation.

20.
Anal Chem ; 86(18): 9322-9, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25151855

RESUMO

Monitoring single molecule probe rotations is an increasingly common approach to studying dynamics of complex systems, including supercooled liquids. Even with advances in fluorophore design and detector sensitivity, such measurements typically exhibit low signal to noise and signal to background ratios. Here, we simulated and analyzed orthogonally decomposed fluorescence signals of single molecules undergoing rotational diffusion in a manner that mimics experimentally collected data of probes in small molecule supercooled liquids. The effects of noise, background, and trajectory length were explicitly considered, as were the effects of data processing approaches that may limit the impact of noise and background on assessment of environmental dynamics. In many cases, data treatment that attempts to remove noise and background were found to be deleterious. However, for short trajectories below a critical signal to background threshold, a thresholding approach that successfully removed data points associated with noise and spared those associated with signal allowed for assessment of environmental dynamics that was as accurate and precise as would be achieved in the absence of noise.


Assuntos
Modelos Teóricos , Corantes Fluorescentes/química , Microscopia de Fluorescência , Rotação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...